
-15-

PATH PASCAL USER MANUAL
Robert B~ Kolstad & Roy Ho Campbell

Deptartment of Computer Science
University of Illinois

Urbane, Illinois 61801

I Introduction.

Experimental Path Pascal was designed to
investigate the benefits and problems that arise
when Path Expressions are combined with a language
to provide a system programming tool. Instead of
altering the Pascal language extensively, a minimal
number of features was added such that Pascal pro-
grams still compile and execute. The language can
be used for instruction or construction of example
system programs. This manual describes the Path
Pascal features and the implementation on the Cyber
and PDP-II.

Path Expressions were introduced as a tech-
nique for specifying process synchronization by
[Campbell & Habermann, 74], and further discussed
by ~abermann, 75], [Lauer & Campbell, 75], [Flon&
Habermann, 76], [Andler, 79] and [Campbell, 77].
Variations of the Path Expression idea have been
proposed by [ONERA CERT, 77] and notations that are
similar to paths that model system behavior have
been developed independently by [Shaw, 77] and
[Riddle, 76]. A specification language has also
been designed [Lauer & Shields, 78] based upon the
use of a Path Expression notation.

Path Pascal is based on the P4 subset of
Pascal [Ammann, et al., 76] (see Appendix F for a
summary of the P4 subset). The Path Pascal com-
piler is written in Pascal P4 and accepts any Pas-
cal P4 program that does not use Path Pascal
reserved words as identifiers. Pascal was aug-
mented with an encapsulation mechanism (see chapter
2), Open Path Expressions [Campbell, 77] (see
chapter 3), and a process mechanism (see chapter
4). Open Paths are integrated with the encapsula-
tion mechanism to enforce a strict discipline upon
the programmer to describe shared data objects.
All access to encapsulated data is performed by
operations synchronized by Open Paths. A process
invoking such operations may execute the operation
only if permitted by the Open Path Expression asso-
ciated with the shared data object.

The following chapters describe Path Pascal
In more detail. Motivations for the design of Path
Pascal are discussed further in [Miller, 78],
[Campbell & Kolstad, 79a], [Campbell & Kolstad,
79b], [Campbell & Kolstad, 80], [Horton & Campbell,
80], and [Kolstad & Campbell, 80]. A description of
Pascal can be found in the Pascal Report [Jensen &
Wirth, 75]. The additional Path Pascal syntax is
listed in Appendix A. Appendix B contains error
messages, control options and constants for the
Path Pascal P code interpreter. Appendix C
describes the semantics of Open Path Expressions in
terms of P and V operations. Appendix D contains
several sample programs. Appendix E describes the
changes that have been made to the intermediate
code (P-Code) for the additional Path Pascal con-
structs. Appendix F summarizes the differences
between Path Pascal and Pascal P4.

2 Dat_._~Encapsulati0n.

2.1 Introduction to O~ects.

Encapsulating data and definitions of opera-
tions on that data ensures that only intended
accesses and transformations are made to an infor-
matlon structure. The addition of a synchroniza-
tion mechanism to data encapsulation allows protec-
tion from asynchronous access. In Path Pascal, an
encapsulation mechanism called an object specifies
access, transformation, and synchronization. An
obJect's data and code are accessible to other
parts of the Pascal programs only by explicit
declaration of entry types and entry operations.
Objects are implemented as an extension of the Pas-
cal structured type facility.

2.2 Object Declaration.

Each object begins with the declarator pbJect,
then specifies the synchronization for the object
via a Path Expression (see chapter 3), followed by
const declarations if needed, type declarations if
needed, var declarations if needed, the routines of
the object (routines can be an initialization
block, procedures, functlons~ processes, or
exported procedures, processes, and functions) in
appropriate order for scope consideration, and
finally an end token. The const, type, vat, and
routine specifications are expressed as in standard
Pascal and have the same actions.

The object defines a block which follows the
scope rules of standard Pascal; though exported
procedures, functions, processes, and types have
the additional attribute of appearing as defined in
the scope containing the object. Only exported
procedures, processes, and functions are available
to enclosing scopes for examination and manipula-
tion of encapsulated data.

Object types may be declared with explicit
names in a type statement or implicitly (along with
Instantlation) using the var statement. Object
names defined as types may be used to declare any
number of object Instantlations in vat statements.
Once instantlated, each object has its own copies
of storage, the obJect's operations, and synchroni-
zation information.

Objects may be nested within structures or
within other objects. Recurslve object Instantla-
tlons, however, are flagged as errors during compi-
lation.

Pointers to objects are declared in va.r state-
meats similar to declarations of pointers to other
data types. Dynamic instantlations may be created
by executing the standard procedure named "new"
with a pointer argument. Pointers to objects per-
mit the construction of encapsulated and recursive
data structures.

2.3 Operations.

Functions, processes, and procedures whose
names are exported from an object are known as
"operations". They are differentiated from

http://crossmark.crossref.org/dialog/?doi=10.1145%2F947706.947708&domain=pdf&date_stamp=1980-09-01

-16-

internal procedures, processes, and functions by
prefixing their declaration by the token entr Z.
Operations, llke all routines within an object, can
invoke other operations and routines within the
object (as long as scope considerations are satis-
fied). Synchronization is applied as usual for
invoked operations.

Operations within an object are invoked as
standard procedures. Outside the object, however,
the name of the obJect's Instantlatlon (or a
dereferenced pointer to the obJect's Instantlatlon)
and a period must precede the name of the operation
to be invoked. Operations may be invoked recur-
slvely, even though a deadlock might eventually
result.

2.4 Exported Types.

An object may export names of types in addition
to names of functions, processes, and procedures.
Variables may then be declared to be =f such types,
though no examination of the internal structure or
representation of the type is possible. A type to
be exported is declared with the word entr_~l between
the "=" and normal type declaration. Simple types
may not he exported. Variables of exported types
may he defined both inside and outside an object,
and passed as arguments into and out of objects,
b u t may not be examined or manipulated outside the
object, since their structure is unknown.

2.5 P a t h Declaration.

The obJect's Path Expression specifies the syn-
chronization constraints of the obJect's opera-
tions. Each operation's name must be mentioned at
least once in the Path Expression. Chapter 3
discusses Path Expressions in detail.

The example below shows the declaration of a
typical obJec_~ type, its instantlation, and two
invocations:

const nbuf = 5;

bufrange = I.o5;
ring =ob~

(* 5 ~ nbuf ~)

path n b u f : (l : (p u t) ; l : (g e t)) , e , nd ;

va_r buffer: array[bufrange) of char;
inp, outp: bufrange;

enid procedure put(x: char);
begin

inp :ffi (inp mod nbuf) + I;
buffer[inp] := x

end;

entry function get: char;
begin

outp := (outp mo d nbuf) + I;
g e t := buffer[outp]

end ;

in,lt; be~
inp : - nbuf;
outp := nbuf

end;
end;

v a t b u f : r i n g ;
c: c h a r ;

b e g i n
b u r . p u t (' a ') ;
c := b u f . g e t

end.

2 .6 Initialization Block.

The initialization part of an object is an
optional block of code which is executed upon
Instantlatlon of the object. Labels, constants,
types, variables, and routines may be declared
within an initialization block. Standard scope
rules apply. An initialization block may appear
anywhere within an obJect's routine declarations.

An initialization block is composed of t h e
token init followed by a semicolon and t h e tokens
begin and end surrounding the block (of declara-
tions and code) to be executed when the object is
created. The use within an inlt block of variables
and routines global to the object is discouraged.
The Inlt blocks of object variables nested within
o t h e r o b j e c t s a r e e x e c u t e d b e f o r e t he b l o c k s of t h e
s u r r o u n d i n g o b j e c t s .

2 . 7 Implementation Details.

Assignments between variables containing
objects are not permitted. Object variables or
structured variables containing objects are always
p a s s e d as r e f e r e n c e p a r a m e t e r s to r o u t i n e s .

The initialization block sets the pointers to
appropriate values for standard ring buffering.
The operation "put" is called to deposit characters
within the buffer, "get" retrieves them. The Path
Expression eliminates need for any further syn-
chronization specification.

2.9 Syntax.

Backus Naur Form f o r e a c h o f t h e new s p e c i f i c a -
t i o n s i s shown be low:

o b J _ t y p e : : - " o b j e c t " <pa th d e c l _ p a r t >
< c o n s t d e f n p a r t >
<obJ t y p d e f _ p t >
<var d e c l _ p a r t >
<operatlonpart> "end"

o b J . t y p d e f _ p t : : = < o b J . t y p e de fn> (" ; "
< o b J . t y p e de fn>) [
<emp ty>

o b J _ t y p e . . d e f n : : - < t y p e _ d e f n > I
<J.dent> " - " " e n t r y " <type>

-17-

operation part :;= { <routine> ";" } [
(<routine> ";" } "init" "'",
<block> < <routine> "~" }

routine ::~ <pp or f decl> [
<opndecl>

pporfdecl : : = <proc decl> [
<~unc decl> I
<proc~ decl> I
<intrp_decl>

opndecl ::~ "entry" <pp_or f decl>

3 Path Expressions.

3.1 Introduction to Path Expressions . •

An Open Path Expressio n specifies the synchron-
ization constraints for a possibly concurrent set
of process, procedure, and function executions
within objects. This static description allows
code to be written without any explicit reference
to synchronization primitives. Each object con-
tains one Path Expression to specify the allowed
orders of sequential and concurrent execution of
the obJect's entry operations. Since only the
entry operations can be accessed from outside the
object, the information structure can be completely
protected from unsafe sequences.

Normally, the order of invocation of procedures
is unknown until the invocation occurs since
processes can execute asynchronously. Path Expres-
sions allow three distinct kinds of constraints to
be specified: sequencing (denoted by ";'),
resource restriction (denoted by "n:()'), and
resource derestrictlon (denoted by "[]'). Each of
these can be combined with the other forms to pro-
vide complex synchronization constraints and
several constraints can be contained in a single
Path Expression. These forms are described with

examples below.

A Path with no synchronization information con-
sists of a comma separated list of operation names
surrounded by path and end. The Path below:

path namel, name2, name3 end

imposes no restriction on the order of invocation
Of the operations and no restriction on the number
of concurrent executions of "namel', "name2", and
"name3"o

The sequencing mechanism imposes an order on
procedure executions. The order is specified by a
seml-colon separated llst. In the example below:

path first; second; third end

one execution of operation "first" must complete
before each execution of "second" may begin, and
one execution of "second" must complete before

each execution of "third" can begin. Of course,
the execution of a "third" or "second" in no way
inhibits the initiation of "first'; several opera-
tions may be executing concurrently.

Limited resources (e.g., llne printers) occa-
sionally make it desirable to limit the number of
concurrent executions of an operation. The
resource restriction specification allows con-
current execution of operations to proceed until
the restriction limit is reached. Restrictions are
denoted by surrounding the expression to be res-
tricted by parentheses and preceding it with the
integer restriction limit and a colon. The res-
triction below:

path 2:(ttyhandler) end

allows only two invocations of °ttyhandler" to
proceed concurrently. Any invocation of
"ttyhandler" will wait until less than two execu-
tions are active before it begins execution. The
number preceding the colon in a restrlctor can be
thought of as the number of resources for which the
operation competes. A critical section, in which
only a single resource is to be shared, is easily
specified. In the example below:

path l:(routinel, routine2, routlne3) end

only one of the three operations can be active at a
time. Restrlctors may be positive integers or
positive constants.

For some applications it is convenient to pro-
cess all calls to an operation once that
operation's execution has begun. Such a situation
might occur when a large spooler is brought into
memory to process I/0 requests. The specifier
denoting "derestrlction" of a llst of operations is
shown by surrounding the llst in square brackets.
The path below:

path setup; [spooler] e n d

r e q u i r e s " s e t u p " t o b e e x e c u t e d b e f o r e e a c h
sequence of calls to "spooler', but once "spooler"
has begun execution, its invocations proceed to
execution until all executions have terminated.
Afterwards, "setup" must again complete before any
"spooler" can proceed.

Each of the forms above (without path and end)
can he considered to be a subexpresslon of a Path.
Subexpresslons may be combined (with the optional
use of parentheses for clarity) in the formats
above to yield complex paths. Normally, the
sequencing operator (";") has higher precedence
than the alternation operator (","). An operation
name may be repeated within a path in which case
the synchronization constraints for each occurrence
of the operation are applied in the order from left
t o r i g h t .

3.2 Examples of Open Paths.

- 1 8 -

I. path a @nd;

Routine "a" can execute at any time, and any
number of "a's can execute concurrently° No
synchronization is specified.

2. path a, b, c end;

Routines "a', "b', and "c" can execute at any
time. Any number of each one can execute con-
currently. No synchronization Is specified.

3. path a; b end;

Routine "a" can be executed at any times but
"b" can only begin if the number of "b's that
have begun execution is less than the number of
"a'8 that have completed.

4. path I : (a) end;

Routine "a" must be executed sequentially (only
one "a" active at a time).

5. pat h 2 : (a) , e n d ;

At most two executions
proceed concurrently.

of routine "a* can

6. path l : (a) , b end;

Multiple invocations of routine "a" proceed in
sequential execution. No restriction is placed
o n rou t ine " b ' .

7. path l:(a), l:(b) end;

Both "a" and "b" are critical sections. A max-
imum of one "a" and one "b" can execute con-
currently.

8. pat h 6 : (5 : (a) , 4 : (b)) end;

As many as five invocations of "a" and four of
"b* can proceed concurrently as long as the
limit of six total executions is not exceeded.

9, path 5 : (a ; b) end;

No more than five executions of routine "a" and
routine %" can be proceeding concurrently.
Each execution of "b" must be preceded by an
execut ion completion of "a ' .

10. path l : ([a] , [b]) end;

Routines "a" and "b" operate in mutual exclu-
sion. Either is authorized to proceed as long
as requests for its execution exist. When the
executing routlne's request llst is exhausted,
either routine may startagaln.

3~3 ~yntaxo

The BNF syntax for Open Paths is shown below:

path decl ::~ "path" <llst> "end"

llst ::~ <sequence> { "," <sequence> }

sequence ::~ <item> { ";" <item> }

item ::~ <bound> ":" "(" <llst> ")" I
a'[" < l i s t> "]" J
"(" <list> ")" [
<ident>

bound ::- <unsgnd int> I
<cons t>

4 Processes.

A process is a program structuring unit which
has an independent execution sequence associated
with it. Processes can interact and are coordi-
nated by performing operations on shared variables.
In Path Pascal, the declaration of a process is
separated from its activation. A process may be
declared in any block and activations of the pro-
cess may be created from any body of code with
scope that includes the declaration.

Processes are declared In a manner similar to
standard Pascal procedures. They may possess
parameters (passed by value or by reference) and
may also have a size attribute. The optional size
attribute is an estimate of the process's storage
requirements.

4.1 Instantlatlon.

An instance of a process is dynamically created
by invoking the process name in the same manner as
a procedure invocation. The creating process need
not walt for the created process to terminate and
continues its own execution. Each process created
is allocated a run-tlme heap and stack from the
heap of the process which is performing the crea-
tion. The number of words allocated is optionally
specified by the size attribute. No mechanism is
provided to abnormally terminate a process; termi-
nation occurs only when the end of a process's code
body is reached.

4.2 Process Storage Considerations.

Processes may themselves spawn processes. The
storage from any process is acquired from the heap
of its parent. It is occasionally desirable to
specify a larger of smaller heap for a process than
that of the default. This is done by inserting the
storage requirement in words between the name of
the process and the arguments (if any). An example

is:

process bigun [500] (arg: i n t) ;

-19-

A process°s storage is not automatically
released when a process terminates. Although mark
and release may be used for storage management,
this use is discouraged.

4.3 Process Lifetimes.

The lifetime of a block which contains a pro-
cess declaration is at least as long as the llfe-
time of any activation of that process. If an
attempt is made to exit a block which contains a
process declaration for which there is an existing
activation, the exit will be delayed until that
process completes.

4.4 Parameter Restriction.

The scope of an actual parameter which is
passed by reference to a process must contain scope
of the process's declaration (hence storage for the
parameter will exist as long as the prucesa does).

4 . 5 Priorities.

One of two static priority schemes can be asso-
ciated with processes in order to provide rudlmen-
tary control over process scheduling. In the first
scheme, all processes have the same priority. In
t h e other, priority is determined by the static
nesting level of a process's declaration, with
processes declared at the outermost levels having
the highest priority. Within a given priority
level, a process is selected for execution by a
first-ln flrst-out scheduler. The second priority
scheme is selected by default, but equal priorities
can be chosen by specifying the "np" option on the
interpreter command card.

4.6 Simulated Time.

A process can be delayed for a fixed time
interval by calling the procedure "delay'. Its
integer argument specifies how long the process is
to be delayed. The number of simulated time units
which have elapsed since execution began can be
obtained from the parameterless integer function
"time'.

4 . 7 Interrupt P r o c e s s e s .

I n t e r r u p t p r o c e s s e s a r e u s e d i n P a t h P a s c a l t o
p r o g r a m i n p u t and o u t p u t d e v i c e s . The d o i o s t a t e -
m e a t is used only within interrupt processes and
suspends process execution while input or output is

being performed.

An interrupt process is declared by preceding a
normal process declaration by the token interrup t
and succeeding it with the priority and interrupt
vector to be assigned both enclosed within square

brackets.

A sample output driver for a PDP-U exemplifies
interrupt processes and is shown below:

interrupt process prlnt[priorlty - 4;
vector = #64] (buf: buffer);

var
i: InteKer;
pts[#177564]:blts;
ptb[#177566]:char;

(* printer status word *)
(* printer buffer word *)

begln
i :- 0;
repeat

i := i + l;
pts :- [6]; (* enable printer interrupt *)
ptb := bur[k]; (* send char to printer *)
do~o; (* walt for interrupt *)
pts :- pts - [6]; (* disable in,erupt *)

until ((i >= llnesize) or (bur[i] " er))

Absolute memory locations can be allocated via an
extension of the vat mechanism which allows easy
access to I/0 devices on machines with architec-
tures similar to that of the PDP-iI. The name of
the variable to be allocated is succeeded by the
location to be assigned enclosed in square brack-
ets. This location may be expressed in octal if it
is preceded by a "#" token.

The bracketed parameters specify the priority
of the process and the location of its interrupt
vector. In the example above, the vector is stored
at location octal 64 (decimal 52) and the priority
of the process is 4. (On the PDP-iI, the priority
of the processor is set to the priority of the pro-
cess it is running. Interrupts from devices can
only affect the process when the process priority
is less than the priority of the interrupting dev-
ice. Other processes normally run with a processor
priority of 0.)

Interrupt processes are created in exactly the
same manner a s other processes. Running duplicate
interrupt processes or terminating an interrupt
process while an interrupt is pending is
discouraged.

4.8 Syntax.

The syntax extensions for interrupt processes
are shown below:

p r o c s _ d e c l : := < p r o c s _ h d g > <block>

p r o c s h d g : := "process" <ident> <size_part>
, , ; , , [
nproeess" <ident> <size_part>
"(" <formal par, see> { ";"
<formal par, see> } ")" ";"

s i z e p a r t : : - " [" <Unsgn_ . in t> "] " [
<empty>

i n t r p t d e c l : :=

i n t r p t _ p r o c s hd : : -

< ~ n t r p t p r o c s hd> <b lock >

"interrupt" "process" <Ident>
<intrpt par.s> ";"
"interrupt" "process" <!dent>
<in, rpt._parms> "("
<formal_par, scn> (";"
< f o r m a l _ p a r m . . s c n > } ")"

i n t r p t p a r m s : : m " [" " p r i o r i t y " "=" <unsgn_..int>
" ; " " v e c t o r " "=" ~ d d r > "] "

-20-

addr : :~ "#" <unsgn_int> I
<unSgn int>

5 Summer Z.

The Path Pascal programming language is an
extension of Pascal P4 which includes concurrent
processes, processes for controlling I/0 devices,
Path Expressions, and objects. The Path Pascal
compiler is written in Pascal P4 and is self-
compiling. An intermediate code (an extended P-
Code) is produced by the Path Pascal compiler and
can either be executed interpretively or assembled
Into machine instructions. The language can be used
to simulate systems, as an educational tool, or to
construct system and real-tlme programs.

6 References.

[Ammann, et el., 76] Ammann, U., K. Norl, and C.
Jacobl, "The Portable Pascal Compiler," Instl-
rut Fuer Informatlk, EIDG, Technische
Hochschule CH-8096, Zurich, 1976.

[Andler, 79] Andler, Sten, "Predicate Path Expres-
sions," 6th Annual ACM Symposium on Principles
of Programming Languages, San Antonio, Tex.,
pp. 226-236, 1979.

[Campbell & Habermann, 74] Campbell, R. R., and A.
N. Habermann, '~rhe Specification of Process
Synchronization by Path Expressions," Lecture
Notes in Computer Science (Editors G. Goos and
J. Hartmanls), Vol. 16, pp. 89-102, Springer-
Verlag, 1974.

[Campbell, 76] Campbell, R. H., "Path Expressions:
A technique for specifying process synchroni-
zation," Ph.D. Thesis, The University of New-
castle upon Tyne, August, 1976; Also, Depart-
ment of Computer Science Technical Report,
University of Illinois at Urbana-Champalgn,
UIUCDCS-R-77-863, May, 1977.

[Campbell & Kolstad, 79a] Campbell, R. H. and R. B.
Kolstad, "Path Expressions in Pascal," Fourth
International Conference on Software Engineer-
ing, Munich, September 17-19, 1979.

[Campbell & Kolstad, 79b] Campbell, R. H. and R. B.
Kolstad, "Practical Applications of Path
Expressions to Systems Programming," ACM79,
Detroit, 1979.

[Campbell & Kolstad, 80] Campbell, R. R. and R. B.
Kolstad, '% Practical Implementation of Path
Pascal," Technical Report, Department of Com-
puter Science, University of llllnois at
Urbana-Champaign, UIUCDCS-R-80-1008, 1980.

[Dahl, et al., 68] Dahl, O. J., B. Myhrhaug, and K.
Nygaard, "The Simula 67 Common Base Language,"
Norwegian Computer Center, Oslo, 1968.

[Flon & Habermann, 76] Flon~ L~ and A° N° Haber-
mann, "Towards the Construction of Verifiable
Software Systems," SIGPLAN Notices Vol~ 8, No.
2, March, 1976.

[Habermann, 75] Habermann, A~ N., "Path Expres-
sions~" Department of Computer Science Techni-
cal Report~ Carnegie-Mellon University, June~
1975.

~abermann, 76] Habermann, A. N.,
Operating System Design,
Associates, p° 89, 1976.

Introduction to
Science Research

~orton & Campbell, 80] Horton, Kurt H~ and Roy H°
Campbell, "PDP-ii Path Pascal Implementation
Manual," Technical Report, University of Illl-
nois at Urbana-Champalgn, to be published,
1980.

[Jensen & Wlrth, 75] Jensen, K. and N. Wlrth,
Pascal User Manual and Report, Springer-
Verlag, New York, 1975.

~auer & Campbell, 75] Lauer, P. E. and R. H. Camp-
bell, "Formal Semantics of a Class of High
Level Primitives for Co-ordlnatlng Concurrent
Processes," Acta Informatlca, No. 5, pp.
297-332, 1975.

~auer & Shields, 78] Lauer, P. E. and M. W.
Shlelds~ "Abstract Specification of Resource
Accessing Disciplines: Adequacy, Starvation,
Priority and Interrupts," SIGPLAN Notices,
Vol. 13, Number 12, pp. 41-59, 1978.

[Miller, 78] Miller, T. J., "An Implementation of
Path Expressions in Pascal," M. S. Thesis,
University of Illinois, Urbane, May, 1978.

[ONERA CERT, 78J "Parallelism, Control and Syn-
chronization Expression in a Single Assignment
Language," Sigplan Notices Vol. 13, No. I,
January, 1978.

[Riddle, 76] Riddle, W. E., "Software System Model-
ling and Analysis," RSSM/25, Tech. Report,
Department of Computer and Communication Sci-
ences, University of Michigan, July, 1976.

[Shaw, 77] Shaw, A. C., "Software Descriptions with
Flow Expressions," IEEE TSE, Vol. 4, No. 3, p.
242-254, May, 1978.

[Wirth, 77] Wirth, N., '~4odula: a Language for
Modular Multlprogramming," Software-Practice
and Experience, Vol. 7, pp. 3-84, 1977.

- 2 1 -

APPENDIX D
PROGRAMMING EXAMPLES

D~I NETWORK

A small network simulation program patterned
after [Brinch Hansen, 78] is presented below. The
network is ring oriented and request-driven.
Requests are sent from a processor through the net-
work to a (probably foreign) processor, where a
complementary process transmits a reply. This
reply is then forwarded to the original processor.
Each processor contains a single input link and a
single output linko A request/response message
pair circumnavigates the ring once in a normal
request/respond cycle or twice if the processor
attempts communication with itself° This program
is presented only to compare and contrast different
methods of synchronization specification, not as a
solution to data transfer problems.

As presented, the program contains not only a
network system, but also a simulation of the
machines and physical lines. The program is some-
what shorter than Brinch Hansen's, and refers to
synchronization only in the Path Expressions of the
objects: semaphores (or conditions), monitors and
queues are not required. The programmer can there-
fore simply invoke routines, knowledgeable of the
fact that they are already synchronized correctly.

The program source is shown here:

const
nmax = 3; (* three nodes *)
cmax - 6; (* six channels *)
bmax ~ 3; 4" three buffers *)

(* The constants above define the network
configuration *)

t y p e
node ffi 1 . .nmax;
c h a n n e l = 1 . . c m a x ;
c h a n n e l s e t = s e t o f c h a n n e l ;
i t e m - a r r a y [l . . l O] of c h a r ;

message - r e c o r d
kind: (request, response);
llnk: channel;
c o n t e n t s : item

end;

(*

(*

l i n e

"item" is the logical atomic data packet
s e n t between nodes. A "message" con-
tains routing information and the

"item'. *)

The "line" simulates the physical line
between machines. Each machine refer-
ences two different "line's: one for
input, one for output. *)

= objec t (* physical llne *)

path l:(to buslink; from buslink) e n d ;

(* input must wait for output from else-
where, only a single output can occur
b e f o r e an I n p u t *)

vat mesgbuffer: message;

entry procedure to buslfnk(m:message);
begin

delay(5);
mesgbuffer :- m

end;

entry procedure from busllnk(va r m:message);

m := mesgbuffer
end;

end; (e llne *)

4 i The "machine" object contains all the
attributes of a simulated machine.
These include: "buffer" operations for
the physical llne; "inputs', which waits
for data to be returned after a request
has been sent; "outputs', which sends
the data after requested; *reader', mon-
itors traffic on line, routing messages
forward or through request/response
mechanism; "writer', which copies mes-
sages from the output buffer to the phy-
sical line; "go', forks the processes
°reader'/'writer" as initialization; and
finally "receive" and "send': the user
accessible routines to use the network
*)

machine = object

path go end ;
(* no s y n c h r o n i z a t i o n

i n i t i a l i z a t i o n *)
necessary for this

type
buffer - object (* s i m p l e queue *)

p a t h b m a x : (t : (b u f p u t) ; l : (b u f g e C)) end;

(* bmax outstanding requests (namely
"bufput's) may exist, "bufput's must
p r e c e d e " b u r g e r ' s . *)

var iobuffer: array[l..bmax] of massage;
Inpp, outp: l..bmax;

e n t r y p r o c e d u r e b u f p u t (m : m e s s a g e) ;
b e g i n

i o b u f f e r [i n p p] := m;
inpp := (inpp mod bmax) + I

end;

entr~procedure bufget4var m:message);
begin

m := iobuffer[outp];
outp :ffi (outp mod bmax) + I

end;

init; begin
Inpp := I;
outp := 1

end;
end; (* buffer *)

4" Only t h e Path Expression synchronizes
the buffer code. *)

inputs - object (* handle input *)

path resp rcvd; resp walt end;

(* "resp wait" will not c o n t i n u e until

-22-

"resp_rcvd" is finished. It then merely
copies the message from the llne moni-
tor. ~)

vat mesgcontents: item;

entry procedure resp rcvd(cont: item);
begin

mesgcontents :i coat
end;

entry procedure resp wait
(var coat: item);

begin
coat :~ mesgcontents

end;
end; (* inputs ~)

outputs - ob~ec t (~ handles output ~)

path rqst rcvd; build mesg end;

(~ "build mesg" may not be executed until
"rqst rcvd" is complete ~)

entry procedure build_mesg(c:channel;
Info:item; va._~ mesg:message);

b e s i n
masg.k ind := r e s p o n s e ;
mesg.link :- c;
mesg.contents := info;

end;

entry procedure rqstrcvd;
begin end;

(* This procedure is empty as no code is
required, only a "signal" for the Path
Expression to process. *)

~nd; (* outputs *)

y a r bur : b u f f e r ;
inp: array [channel] of Inputs;
out: array [channel] of outputs;
(* logical channels are used for communica-

tion. Each machine has a different set
of input and output channels. *)

process reader(lapser, outset:channelset;
inllne:line);

(* read messages from line *)
va___r m: message;

begin
repeat

Inllne.frombuslink(m);
(* get message from llne *)

i_~ (m.klnd ffi response) and
(m.llnk i__n Inpset)

(* response for me? ~)
the__ninp[m.link].resprcvd(m.contents)

else
if (m.klnd = request) an__..d

(m.llnk In outset)
(* request for me? *)

then out[m.llnk].rqst rcvd
else

buf°bufput(m)
(* pass message on *)

until false
end; (* reader process ,)

~rocess writer(outllne:llnk);
(* put messages onto line ~)

va_r m: message;

ben
repeat

buf.bufget(m);
outline.to buslink(m)

until false
end; (* wrlterprocess *)

entry procedure go(who: node;
inpset, outset:channelset;
Inllne, outline: llne);
begin

reader(lapser, outset, inline);
writer(outline)

end;

(~ User called procedures: *)

procedure recelve(c:channel; va___Kv:item);

va._rmesg: message;

begin
mesg.kind : - request;
mesg.link := c;
buf.bufput(mesg); (* request mesg *)
inp[c].resp wai=(v) (* grab response *)

end;

procedure send(c: channel; info:item);

vat mesg: massage;

b e g i n
out[e].build mesg(c, info, mesg);

(* build mesg after reqst *)
buf.bufput(mesg) (* send mesg along *)

end;

(* Each machines's code would go here: it
would be invoked by go *)

end; (* machine ~)

(~ Finally, it is necessary to specify the
physical lines between the machines *)

va__~net: array [node] o_~ machine;
lines: array [node] o_~ llne;

b e g i n
net[l].go(l, [2,3], [1,4], lines[3], lines[2]);
net[2].go(2, [1,6], [2,5], llnes[l], lines[3]);
net[3].go(3, [4,5], [3,6], lines[2], lines[1])

end.

D.2 DINING PHILOSOPHERS

The well known problem of the dining philoso-
phers involves a set of five philosophers whose
activities in life are eating and thinking. Each
philosopher thinks for a while, eats, thinks, eats
and so on. The philosophers share a unique dining
arrangement: though two utensils are required for
a philosopher to eat, the five dining places are
located around a circular table with only one

-23

utensil on the right of each dining place. There-
fore, the philosophers must share utensils° The
problem involves the scheduling of the philosophers
so that no philosopher attempts to begin eating
when his utensils are not available° The Path Pas-
cal solution to this problem is different from many
in that no explicit queues are needed~ Each philo-
sopher is a process attempting to use the ~fork"
objects~ Paths synchronize access and prevent
deadlocks from occurring° Note that only simple
synchronization statements are given (e.g., only
four philosophers eating at a time, only one using
each fork)° The rest of the program specifies the
logic of thinking and eating.

eonst nphilosophers = 5;
maxlndex = 4; (e nphilosophers - I ~)

type diner - 0..maxindex;

va__[i: integer;
table: object

path maxlndex:(starteating; stope~ting) end;
yar fork: array [diner] of

object
path l:(pickup; putdown) end;
entry procedure pickup; begin end;
entry procedur, e putdown; begin en_d;

end;

e n t r 7 procedure starteating(no: d i n e r) ;
begin

fork[no].pickup;
fork[(no+l) ,mo,d nphilosophers].plckup

end;

e n t r y p rocedure s t o p e a t i n g (n o : d i n e r) ;
begin

f o r k [no] .putdown;
f o r k [(n o + l) mod n p h i l o s o p h e r s] . p u t d o w u ;

end;
end; (* table *)

p roces s phi losopher(mynum: d i n e r) ;
begin

repeat
delay(ran(seed));
table.starteatlng(mynum);
delay(ran(seed));
table.stopeatlng(mynum);

until false;
end;

fo r i:= 0 t_omaxindex d_gphilosopher(i)
end.

D.3 BUFFER MANAGEMENT

A simple ring buffer
below:

implementation is shown

const bufsize = 32;
maxbuf = 31;

ire buffer = object (* b u f f e r s l/~ ~)

pat ~ bufslze: (I: (fill); I: (empty)) end;

buf range = O..maxbuf;
b u f a r r a y = a r r a y [b u f r a n g e] of char ;

var inptr, outptr: bufrange;
buf: bufarray;

entry procedure flll(ch: char);
begin

buf[Inptr] :- ch;
inptr :- (inptr+l) mod bufsize

e~d;

entry procedur@ empty(va_ E ch: char);
begin

ch :- buf[outptr];
outptr :- (outptr+l) m°,d bufsize

en__d;

init; begin Inptr :- 0; outptr := 0 end
end;

Two routines are provided, "fill" and "empty'.
Note that the routines are very terse: only infor-
mation relating to the actually changing of
pointers and data is presented. All synchroniza-
tion and restriction information is described by
the Path Expression, which assures mutual exclusion
for each routine and places a maximum on the buffer
size. Attempts to exceed the buffer size are not
allowed to proceed until an element is removed from
the b u f f e r .

D.4 TERMINAL DRIVER

A simple driver for a full duplex terminal is
shown below:

type bits = set of 0..15;

Ya.r sereenbuf, programbuf: buffer;

interrupt process kbd[veetor = #60, priority - 4];

va__/ kybdst[#177560]: bits;
kybddt[#177562]: bits;
ch: b i t s ;

begin
kybdst := [6];
repeat

dolo;
ch :- kybddt - [7]; (* zap parity blt! *)
acreenbuf.flll(ch);
programbuf.fill(ch);

u n t i l false;
end;

-24-

interrupt proces s scrn[yector - #64, Rrlorltz ~ 4];

va_iscnst[#177564]: bits;
scndt[#177566]: bits;
ch: b i t s ;

be~
scnst :- [6];
repeat

screenbuf.empty(ch);
scndt :~ ch;
dolo;

until false;
end;

The two routines perform input and output respec-
tlvely. Very little code is required once all
speclflcatlons have been presented. The dolo in
each routine waits for its associated interrupt and
then does a small amount of processing before ena-
bling the next interrupt. The input routine fills
a buffer named "screenbuf', whlle the output
routine empties it and displays it on the screen
after copying the contents to "programbuf'. These
routines show the ease with which device drivers
can be implemented in Path Pascal.

BIBLIOGRAPHY

[Brtnch Hansen, 78] Brinch Hansen, P . , 'Network: A
Multlprocessor Program," IEEE Trans. Software
Eng., Vol. BE-4, No. 3, pp. 194-199, May,
1978.

