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I Introduction. 

Experimental Path Pascal was designed to 
investigate the benefits and problems that arise 
when Path Expressions are combined with a language 
to provide a system programming tool. Instead of 
altering the Pascal language extensively, a minimal 
number of features was added such that Pascal pro- 
grams still compile and execute. The language can 
be used for instruction or construction of example 
system programs. This manual describes the Path 
Pascal features and the implementation on the Cyber 
and PDP-II. 

Path Expressions were introduced as a tech- 
nique for specifying process synchronization by 
[Campbell & Habermann, 74], and further discussed 
by ~abermann, 75], [Lauer & Campbell, 75], [Flon& 
Habermann, 76], [Andler, 79] and [Campbell, 77]. 
Variations of the Path Expression idea have been 
proposed by [ONERA CERT, 77] and notations that are 
similar to paths that model system behavior have 
been developed independently by [Shaw, 77] and 
[Riddle, 76]. A specification language has also 
been designed [Lauer & Shields, 78] based upon the 
use of a Path Expression notation. 

Path Pascal is based on the P4 subset of 
Pascal [Ammann, et al., 76] (see Appendix F for a 
summary of the P4 subset). The Path Pascal com- 
piler is written in Pascal P4 and accepts any Pas- 
cal P4 program that does not use Path Pascal 
reserved words as identifiers. Pascal was aug- 
mented with an encapsulation mechanism (see chapter 
2), Open Path Expressions [Campbell, 77] (see 
chapter 3), and a process mechanism (see chapter 
4). Open Paths are integrated with the encapsula- 
tion mechanism to enforce a strict discipline upon 
the programmer to describe shared data objects. 
All access to encapsulated data is performed by 
operations synchronized by Open Paths. A process 
invoking such operations may execute the operation 
only if permitted by the Open Path Expression asso- 
ciated with the shared data object. 

The following chapters describe Path Pascal 
In more detail. Motivations for the design of Path 
Pascal are discussed further in [Miller, 78], 
[Campbell & Kolstad, 79a], [Campbell & Kolstad, 
79b], [Campbell & Kolstad, 80], [Horton & Campbell, 
80], and [Kolstad & Campbell, 80]. A description of 
Pascal can be found in the Pascal Report [Jensen & 
Wirth, 75]. The additional Path Pascal syntax is 
listed in Appendix A. Appendix B contains error 
messages, control options and constants for the 
Path Pascal P code interpreter. Appendix C 
describes the semantics of Open Path Expressions in 
terms of P and V operations. Appendix D contains 
several sample programs. Appendix E describes the 
changes that have been made to the intermediate 
code (P-Code) for the additional Path Pascal con- 
structs. Appendix F summarizes the differences 
between Path Pascal and Pascal P4. 

2 Dat_._~Encapsulati0n. 

2.1 Introduction to O~ects. 

Encapsulating data and definitions of opera- 
tions on that data ensures that only intended 
accesses and transformations are made to an infor- 
matlon structure. The addition of a synchroniza- 
tion mechanism to data encapsulation allows protec- 
tion from asynchronous access. In Path Pascal, an 
encapsulation mechanism called an object specifies 
access, transformation, and synchronization. An 
obJect's data and code are accessible to other 
parts of the Pascal programs only by explicit 
declaration of entry types and entry operations. 
Objects are implemented as an extension of the Pas- 
cal structured type facility. 

2.2 Object Declaration. 

Each object begins with the declarator pbJect, 
then specifies the synchronization for the object 
via a Path Expression (see chapter 3), followed by 
const declarations if needed, type declarations if 
needed, var declarations if needed, the routines of 
the object (routines can be an initialization 
block, procedures, functlons~ processes, or 
exported procedures, processes, and functions) in 
appropriate order for scope consideration, and 
finally an end token. The const, type, vat, and 
routine specifications are expressed as in standard 
Pascal and have the same actions. 

The object defines a block which follows the 
scope rules of standard Pascal; though exported 
procedures, functions, processes, and types have 
the additional attribute of appearing as defined in 
the scope containing the object. Only exported 
procedures, processes, and functions are available 
to enclosing scopes for examination and manipula- 
tion of encapsulated data. 

Object types may be declared with explicit 
names in a type statement or implicitly (along with 
Instantlation) using the var statement. Object 
names defined as types may be used to declare any 
number of object Instantlations in vat statements. 
Once instantlated, each object has its own copies 
of storage, the obJect's operations, and synchroni- 
zation information. 

Objects may be nested within structures or 
within other objects. Recurslve object Instantla- 
tlons, however, are flagged as errors during compi- 
lation. 

Pointers to objects are declared in va.r state- 
meats similar to declarations of pointers to other 
data types. Dynamic instantlations may be created 
by executing the standard procedure named "new" 
with a pointer argument. Pointers to objects per- 
mit the construction of encapsulated and recursive 
data structures. 

2.3 Operations. 

Functions, processes, and procedures whose 
names are exported from an object are known as 
"operations". They are differentiated from 
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internal procedures, processes, and functions by 
prefixing their declaration by the token entr Z. 
Operations, llke all routines within an object, can 
invoke other operations and routines within the 
object (as long as scope considerations are satis- 
fied). Synchronization is applied as usual for 
invoked operations. 

Operations within an object are invoked as 
standard procedures. Outside the object, however, 
the name of the obJect's Instantlatlon (or a 
dereferenced pointer to the obJect's Instantlatlon) 
and a period must precede the name of the operation 
to be invoked. Operations may be invoked recur- 
slvely, even though a deadlock might eventually 
result. 

2.4 Exported Types. 

An object may export names of types in addition 
to names of functions, processes, and procedures. 
Variables may then be declared to be =f such types, 
though no examination of the internal structure or 
representation of the type is possible. A type to 
be exported is declared with the word entr_~l between 
the "=" and normal type declaration. Simple types 
may not he exported. Variables of exported types 
may he defined both inside and outside an object, 
and passed as arguments into and out of objects, 
b u t  may not be examined or manipulated outside the 
object, since their structure is unknown. 

2.5 P a t h  Declaration. 

The obJect's Path Expression specifies the syn- 
chronization constraints of the obJect's opera- 
tions. Each operation's name must be mentioned at 
least once in the Path Expression. Chapter 3 
discusses Path Expressions in detail. 

The example below shows the declaration of a 
typical obJec_~ type, its instantlation, and two 
invocations: 

const nbuf = 5; 

bufrange = I.o5; 
ring =ob~ 

(* 5 ~ nbuf  ~) 

path n b u f : ( l : ( p u t ) ;  l : ( g e t ) ) , e ,  nd ;  

va_r buffer: array[bufrange) of char; 
inp, outp: bufrange; 

enid procedure put(x: char); 
begin 

inp :ffi (inp mod nbuf) + I; 
buffer[inp] := x 

end; 

entry function get: char; 
begin 

outp := (outp mo d nbuf) + I; 
g e t  := buffer[outp] 

end ;  

in,lt; be~ 
inp : -  nbuf; 
outp := nbuf 

end; 
end;  

v a t  b u f :  r i n g ;  
c: c h a r ;  

b e g i n  
b u r . p u t  ( ' a ' )  ; 
c := b u f . g e t  

end.  

2 .6  Initialization Block. 

The initialization part of an object is an 
optional block of code which is executed upon 
Instantlatlon of the object. Labels, constants, 
types, variables, and routines may be declared 
within an initialization block. Standard scope 
rules apply. An initialization block may appear 
anywhere within an obJect's routine declarations. 

An initialization block is composed of t h e  
token init followed by a semicolon and t h e  tokens 
begin and end surrounding the block (of declara- 
tions and code) to be executed when the object is 
created. The use within an inlt block of variables 
and routines global to the object is discouraged. 
The Inlt blocks of object variables nested within 
o t h e r  o b j e c t s  a r e  e x e c u t e d  b e f o r e  t he  b l o c k s  of t h e  
s u r r o u n d i n g  o b j e c t s .  

2 . 7  Implementation Details. 

Assignments between variables containing 
objects are not permitted. Object variables or 
structured variables containing objects are always 
p a s s e d  as  r e f e r e n c e  p a r a m e t e r s  to  r o u t i n e s .  

The initialization block sets the pointers to 
appropriate values for standard ring buffering. 
The operation "put" is called to deposit characters 
within the buffer, "get" retrieves them. The Path 
Expression eliminates need for any further syn- 
chronization specification. 

2.9 Syntax. 

Backus Naur  Form f o r  e a c h  o f  t h e  new s p e c i f i c a -  
t i o n s  i s  shown be low:  

o b J _ t y p e  : : -  " o b j e c t "  <pa th  d e c l _ p a r t >  
< c o n s t d e f n  p a r t >  
<obJ t y p d e f _ p t >  
<var  d e c l _ p a r t >  
<operatlonpart> "end" 

o b J . t y p d e f _ p t  : : =  < o b J . t y p e  de fn>  ( " ; "  
< o b J . t y p e  de fn>  ) [ 
<emp ty> 

o b J _ t y p e . . d e f n  : : -  < t y p e _ d e f n >  I 
<J.dent> " - "  " e n t r y "  <type> 
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operation part :;= { <routine> ";" } [ 
( <routine> ";" } "init" "'", 
<block> < <routine> "~" } 

routine ::~ <pp or f decl> [ 
<opndecl> 

pporfdecl : : =  <proc decl> [ 
<~unc decl> I 
<proc~ decl> I 
<intrp_decl> 

opndecl ::~ "entry" <pp_or f decl> 

3 Path Expressions. 

3.1 Introduction to Path Expressions . • 

An Open Path Expressio n specifies the synchron- 
ization constraints for a possibly concurrent set 
of process, procedure, and function executions 
within objects. This static description allows 
code to be written without any explicit reference 
to synchronization primitives. Each object con- 
tains one Path Expression to specify the allowed 
orders of sequential and concurrent execution of 
the obJect's entry operations. Since only the 
entry operations can be accessed from outside the 
object, the information structure can be completely 
protected from unsafe sequences. 

Normally, the order of invocation of procedures 
is unknown until the invocation occurs since 
processes can execute asynchronously. Path Expres- 
sions allow three distinct kinds of constraints to 
be specified: sequencing (denoted by ";'), 
resource restriction (denoted by "n:()'), and 
resource derestrictlon (denoted by "[ ]'). Each of 
these can be combined with the other forms to pro- 
vide complex synchronization constraints and 
several constraints can be contained in a single 
Path Expression. These forms are described with 

examples below. 

A Path with no synchronization information con- 
sists of a comma separated list of operation names 
surrounded by path and end. The Path below: 

path namel, name2, name3 end 

imposes no restriction on the order of invocation 
Of the operations and no restriction on the number 
of concurrent executions of "namel', "name2", and 
"name3"o 

The sequencing mechanism imposes an order on 
procedure executions. The order is specified by a 
seml-colon separated llst. In the example below: 

path first; second; third end 

one execution of operation "first" must complete 
before each execution of "second" may begin, and 
one execution of "second" must complete before 

each execution of "third" can begin. Of course, 
the execution of a "third" or "second" in no way 
inhibits the initiation of "first'; several opera- 
tions may be executing concurrently. 

Limited resources (e.g., llne printers) occa- 
sionally make it desirable to limit the number of 
concurrent executions of an operation. The 
resource restriction specification allows con- 
current execution of operations to proceed until 
the restriction limit is reached. Restrictions are 
denoted by surrounding the expression to be res- 
tricted by parentheses and preceding it with the 
integer restriction limit and a colon. The res- 
triction below: 

path 2:(ttyhandler) end 

allows only two invocations of °ttyhandler" to 
proceed concurrently. Any invocation of 
"ttyhandler" will wait until less than two execu- 
tions are active before it begins execution. The 
number preceding the colon in a restrlctor can be 
thought of as the number of resources for which the 
operation competes. A critical section, in which 
only a single resource is to be shared, is easily 
specified. In the example below: 

path l:(routinel, routine2, routlne3) end 

only one of the three operations can be active at a 
time. Restrlctors may be positive integers or 
positive constants. 

For some applications it is convenient to pro- 
cess all calls to an operation once that 
operation's execution has begun. Such a situation 
might occur when a large spooler is brought into 
memory to process I/0 requests. The specifier 
denoting "derestrlction" of a llst of operations is 
shown by surrounding the llst in square brackets. 
The path below: 

path setup; [spooler] e n  d 

r e q u i r e s  " s e t u p "  t o  b e  e x e c u t e d  b e f o r e  e a c h  
sequence of calls to "spooler', but once "spooler" 
has begun execution, its invocations proceed to 
execution until all executions have terminated. 
Afterwards, "setup" must again complete before any 
"spooler" can proceed. 

Each of the forms above (without path and end) 
can he considered to be a subexpresslon of a Path. 
Subexpresslons may be combined (with the optional 
use of parentheses for clarity) in the formats 
above to yield complex paths. Normally, the 
sequencing operator (";") has higher precedence 
than the alternation operator (","). An operation 
name may be repeated within a path in which case 
the synchronization constraints for each occurrence 
of the operation are applied in the order from left 
t o  r i g h t .  

3.2 Examples of Open Paths. 
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I. path a @nd; 

Routine "a" can execute at any time, and any 
number of "a's can execute concurrently° No 
synchronization is specified. 

2. path a, b, c end; 

Routines "a', "b', and "c" can execute at any 
time. Any number of each one can execute con- 
currently. No synchronization Is specified. 

3. path a; b end; 

Routine "a" can be executed at any times but 
"b" can only begin if the number of "b's that 
have begun execution is less than the number of 
"a'8 that have completed. 

4. path I :  (a) end; 

Routine "a" must be executed sequentially (only 
one "a" active at a time). 

5. pat  h 2 : ( a ) , e n d ;  

At most two executions 
proceed concurrently. 

of routine "a* can 

6. path l : ( a ) ,  b end;  

Multiple invocations of routine "a" proceed in 
sequential execution. No restriction is placed 
o n  rou t ine  " b ' .  

7. path l:(a), l:(b) end; 

Both "a" and "b" are critical sections. A max- 
imum of one "a" and one "b" can execute con- 
currently. 

8. pat  h 6 : ( 5 : ( a ) ,  4 : (b ) )  end; 

As many as five invocations of "a" and four of 
"b* can proceed concurrently as long as the 
limit of six total executions is not exceeded. 

9, path 5 : ( a ;  b) end; 

No more than five executions of routine "a" and 
routine %" can be proceeding concurrently. 
Each execution of "b" must be preceded by an 
execut ion  completion of "a ' .  

10. path l : ( [ a ] ,  [b]) end; 

Routines "a" and "b" operate in mutual exclu- 
sion. Either is authorized to proceed as long 
as requests for its execution exist. When the 
executing routlne's request llst is exhausted, 
either routine may startagaln. 

3~3 ~yntaxo 

The BNF syntax for Open Paths is shown below: 

path decl ::~ "path" <llst> "end" 

llst ::~ <sequence> { "," <sequence> } 

sequence ::~ <item> { ";" <item> } 

item ::~ <bound> ":" "(" <llst> ")" I 
a'[" < l i s t>  "]" J 
"(" <list> ")" [ 
<ident> 

bound ::- <unsgnd int> I 
<cons t> 

4 Processes. 

A process is a program structuring unit which 
has an independent execution sequence associated 
with it. Processes can interact and are coordi- 
nated by performing operations on shared variables. 
In Path Pascal, the declaration of a process is 
separated from its activation. A process may be 
declared in any block and activations of the pro- 
cess may be created from any body of code with 
scope that includes the declaration. 

Processes are declared In a manner similar to 
standard Pascal procedures. They may possess 
parameters (passed by value or by reference) and 
may also have a size attribute. The optional size 
attribute is an estimate of the process's storage 
requirements. 

4.1 Instantlatlon. 

An instance of a process is dynamically created 
by invoking the process name in the same manner as 
a procedure invocation. The creating process need 
not walt for the created process to terminate and 
continues its own execution. Each process created 
is allocated a run-tlme heap and stack from the 
heap of the process which is performing the crea- 
tion. The number of words allocated is optionally 
specified by the size attribute. No mechanism is 
provided to abnormally terminate a process; termi- 
nation occurs only when the end of a process's code 
body is reached. 

4.2 Process Storage Considerations. 

Processes may themselves spawn processes. The 
storage from any process is acquired from the heap 
of its parent. It is occasionally desirable to 
specify a larger of smaller heap for a process than 
that of the default. This is done by inserting the 
storage requirement in words between the name of 
the process and the arguments (if any). An example 

is: 

process bigun [500] (arg: i n t ) ;  
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A process°s storage is not automatically 
released when a process terminates. Although mark 
and release may be used for storage management, 
this use is discouraged. 

4.3 Process Lifetimes. 

The lifetime of a block which contains a pro- 
cess declaration is at least as long as the llfe- 
time of any activation of that process. If an 
attempt is made to exit a block which contains a 
process declaration for which there is an existing 
activation, the exit will be delayed until that 
process completes. 

4.4 Parameter Restriction. 

The scope of an actual parameter which is 
passed by reference to a process must contain scope 
of the process's declaration (hence storage for the 
parameter will exist as long as the prucesa does). 

4 . 5  Priorities. 

One of two static priority schemes can be asso- 
ciated with processes in order to provide rudlmen- 
tary control over process scheduling. In the first 
scheme, all processes have the same priority. In 
t h e  other, priority is determined by the static 
nesting level of a process's declaration, with 
processes declared at the outermost levels having 
the highest priority. Within a given priority 
level, a process is selected for execution by a 
first-ln flrst-out scheduler. The second priority 
scheme is selected by default, but equal priorities 
can be  chosen by specifying the "np" option on the 
interpreter command card. 

4.6 Simulated Time. 

A process can be delayed for a fixed time 
interval by calling the procedure "delay'. Its 
integer argument specifies how long the process is 
to be delayed. The number of simulated time units 
which have elapsed since execution began can be 
obtained from the parameterless integer function 
"time'. 

4 . 7  Interrupt P r o c e s s e s .  

I n t e r r u p t  p r o c e s s e s  a r e  u s e d  i n  P a t h  P a s c a l  t o  
p r o g r a m  i n p u t  and  o u t p u t  d e v i c e s .  The  d o i o  s t a t e -  
m e a t  is used only within interrupt processes and 
suspends process execution while input or output is 

being performed. 

An interrupt process is declared by preceding a 
normal process declaration by the token interrup t 
and succeeding it with the priority and interrupt 
vector to be assigned both enclosed within square 

brackets. 

A sample output driver for a PDP-U exemplifies 
interrupt processes and is shown below: 

interrupt process prlnt[priorlty - 4; 
vector = #64] (buf: buffer); 

var 
i: InteKer; 
pts[#177564]:blts; 
ptb[#177566]:char; 

(* printer status word *) 
(* printer buffer word *) 

begln 
i :- 0; 
repeat 

i := i + l; 
pts :- [6]; (* enable printer interrupt *) 
ptb := bur[k]; (* send char to printer *) 
do~o; (* walt for interrupt *) 
pts :- pts - [6]; (* disable in,erupt *) 

until ((i >= llnesize) or (bur[i] " er)) 

Absolute memory locations can be allocated via an 
extension of the vat mechanism which allows easy 
access to I/0 devices on machines with architec- 
tures similar to that of the PDP-iI. The name of 
the variable to be allocated is succeeded by the 
location to be assigned enclosed in square brack- 
ets. This location may be expressed in octal if it 
is preceded by a "#" token. 

The bracketed parameters specify the priority 
of the process and the location of its interrupt 
vector. In the example above, the vector is stored 
at location octal 64 (decimal 52) and the priority 
of the process is 4. (On the PDP-iI, the priority 
of the processor is set to the priority of the pro- 
cess it is running. Interrupts from devices can 
only affect the process when the process priority 
is less than the priority of the interrupting dev- 
ice. Other processes normally run with a processor 
priority of 0.) 

Interrupt processes are created in exactly the 
same manner a s  other processes. Running duplicate 
interrupt processes or terminating an interrupt 
process while an interrupt is pending is 
discouraged. 

4.8 Syntax. 

The syntax extensions for interrupt processes 
are shown below: 

p r o c s _ d e c l  : := < p r o c s _ h d g >  <block> 

p r o c s  h d g  : := "process" <ident> <size_part> 
, , ; , ,  [ 
nproeess" <ident> <size_part> 
"(" <formal par, see> { ";" 
<formal par, see> } ")" ";" 

s i z e  p a r t  : : -  " [ "  <Unsgn_ . in t>  " ] "  [ 
<empty> 

i n t r p t  d e c l  : := 

i n t r p t _ p r o c s  hd  : : -  

< ~ n t r p t  p r o c s  hd> <b lock >  

"interrupt" "process" <Ident> 
<intrpt par.s> ";" 
"interrupt" "process" <!dent> 
<in, rpt._parms> "(" 
<formal_par, scn> ( ";" 
< f o r m a l _ p a r m . . s c n >  } ")" 

i n t r p t  p a r m s  : : m  " [ "  " p r i o r i t y "  "="  <unsgn_..int> 
" ; "  " v e c t o r "  "="  ~ d d r >  " ] "  
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addr : :~ "#" <unsgn_int> I 
<unSgn int> 

5 Summer Z. 

The Path Pascal programming language is an 
extension of Pascal P4 which includes concurrent 
processes, processes for controlling I/0 devices, 
Path Expressions, and objects. The Path Pascal 
compiler is written in Pascal P4 and is self- 
compiling. An intermediate code (an extended P- 
Code) is produced by the Path Pascal compiler and 
can either be executed interpretively or assembled 
Into machine instructions. The language can be used 
to simulate systems, as an educational tool, or to 
construct system and real-tlme programs. 

6 References. 

[Ammann, et el., 76] Ammann, U., K. Norl, and C. 
Jacobl, "The Portable Pascal Compiler," Instl- 
rut Fuer Informatlk, EIDG, Technische 
Hochschule CH-8096, Zurich, 1976. 

[Andler, 79] Andler, Sten, "Predicate Path Expres- 
sions," 6th Annual ACM Symposium on Principles 
of Programming Languages, San Antonio, Tex., 
pp. 226-236, 1979. 

[Campbell & Habermann, 74] Campbell, R. R., and A. 
N. Habermann, '~rhe Specification of Process 
Synchronization by Path Expressions," Lecture 
Notes in Computer Science (Editors G. Goos and 
J. Hartmanls), Vol. 16, pp. 89-102, Springer- 
Verlag, 1974. 

[Campbell, 76] Campbell, R. H., "Path Expressions: 
A technique for specifying process synchroni- 
zation," Ph.D. Thesis, The University of New- 
castle upon Tyne, August, 1976; Also, Depart- 
ment of Computer Science Technical Report, 
University of Illinois at Urbana-Champalgn, 
UIUCDCS-R-77-863, May, 1977. 

[Campbell & Kolstad, 79a] Campbell, R. H. and R. B. 
Kolstad, "Path Expressions in Pascal," Fourth 
International Conference on Software Engineer- 
ing, Munich, September 17-19, 1979. 

[Campbell & Kolstad, 79b] Campbell, R. H. and R. B. 
Kolstad, "Practical Applications of Path 
Expressions to Systems Programming," ACM79, 
Detroit, 1979. 

[Campbell & Kolstad, 80] Campbell, R. R. and R. B. 
Kolstad, '% Practical Implementation of Path 
Pascal," Technical Report, Department of Com- 
puter Science, University of llllnois at 
Urbana-Champaign, UIUCDCS-R-80-1008, 1980. 

[Dahl, et al., 68] Dahl, O. J., B. Myhrhaug, and K. 
Nygaard, "The Simula 67 Common Base Language," 
Norwegian Computer Center, Oslo, 1968. 

[Flon & Habermann, 76] Flon~ L~ and A° N° Haber- 
mann, "Towards the Construction of Verifiable 
Software Systems," SIGPLAN Notices Vol~ 8, No. 
2, March, 1976. 

[Habermann, 75] Habermann, A~ N., "Path Expres- 
sions~" Department of Computer Science Techni- 
cal Report~ Carnegie-Mellon University, June~ 
1975. 

~abermann, 76] Habermann, A. N., 
Operating System Design, 
Associates, p° 89, 1976. 

Introduction to 
Science Research 

~orton & Campbell, 80] Horton, Kurt H~ and Roy H° 
Campbell, "PDP-ii Path Pascal Implementation 
Manual," Technical Report, University of Illl- 
nois at Urbana-Champalgn, to be published, 
1980. 

[Jensen & Wlrth, 75] Jensen, K. and N. Wlrth, 
Pascal User Manual and Report, Springer- 
Verlag, New York, 1975. 

~auer & Campbell, 75] Lauer, P. E. and R. H. Camp- 
bell, "Formal Semantics of a Class of High 
Level Primitives for Co-ordlnatlng Concurrent 
Processes," Acta Informatlca, No. 5, pp. 
297-332, 1975. 

~auer & Shields, 78] Lauer, P. E. and M. W. 
Shlelds~ "Abstract Specification of Resource 
Accessing Disciplines: Adequacy, Starvation, 
Priority and Interrupts," SIGPLAN Notices, 
Vol. 13, Number 12, pp. 41-59, 1978. 

[Miller, 78] Miller, T. J., "An Implementation of 
Path Expressions in Pascal," M. S. Thesis, 
University of Illinois, Urbane, May, 1978. 

[ONERA CERT, 78J "Parallelism, Control and Syn- 
chronization Expression in a Single Assignment 
Language," Sigplan Notices Vol. 13, No. I, 
January, 1978. 

[Riddle, 76] Riddle, W. E., "Software System Model- 
ling and Analysis," RSSM/25, Tech. Report, 
Department of Computer and Communication Sci- 
ences, University of Michigan, July, 1976. 

[Shaw, 77] Shaw, A. C., "Software Descriptions with 
Flow Expressions," IEEE TSE, Vol. 4, No. 3, p. 
242-254, May, 1978. 

[Wirth, 77] Wirth, N., '~4odula: a Language for 
Modular Multlprogramming," Software-Practice 
and Experience, Vol. 7, pp. 3-84, 1977. 



- 2 1 -  

APPENDIX D 
PROGRAMMING EXAMPLES 

D~I NETWORK 

A small network simulation program patterned 
after [Brinch Hansen, 78] is presented below. The 
network is ring oriented and request-driven. 
Requests are sent from a processor through the net- 
work to a (probably foreign) processor, where a 
complementary process transmits a reply. This 
reply is then forwarded to the original processor. 
Each processor contains a single input link and a 
single output linko A request/response message 
pair circumnavigates the ring once in a normal 
request/respond cycle or twice if the processor 
attempts communication with itself° This program 
is presented only to compare and contrast different 
methods of synchronization specification, not as a 
solution to data transfer problems. 

As presented, the program contains not only a 
network system, but also a simulation of the 
machines and physical lines. The program is some- 
what shorter than Brinch Hansen's, and refers to 
synchronization only in the Path Expressions of the 
objects: semaphores (or conditions), monitors and 
queues are not required. The programmer can there- 
fore simply invoke routines, knowledgeable of the 
fact that they are already synchronized correctly. 

The program source is shown here: 

const 
nmax = 3; (* three nodes  *) 
cmax - 6;  (* six channels *) 
bmax ~ 3; 4" three buffers *) 

(* The constants above define the network 
configuration *) 

t y p e  
node ffi 1 . .nmax;  
c h a n n e l  = 1 . . c m a x ;  
c h a n n e l s e t  = s e t  o f  c h a n n e l ;  
i t e m  - a r r a y [ l . . l O ]  of  c h a r ;  

message - r e c o r d  
kind: (request, response); 
llnk: channel; 
c o n t e n t s :  item 

end; 

(* 

(* 

l i n e  

"item" is the logical atomic data packet 
s e n t  between nodes. A "message" con- 
tains routing information and the 

"item'. *) 

The "line" simulates the physical line 
between machines. Each machine refer- 
ences two different "line's: one for 
input, one for output. *) 

= objec t (* physical llne *) 

path l:(to buslink; from buslink) e n d ;  

(* input must wait for output from else- 
where, only a single output can occur 
b e f o r e  an  I n p u t  *)  

vat mesgbuffer: message; 

entry procedure to buslfnk(m:message); 
begin 

delay(5); 
mesgbuffer :- m 

end; 

entry procedure from busllnk(va r m:message); 

m := mesgbuffer 
end; 

end; (e llne *) 

4 i The "machine" object contains all the 
attributes of a simulated machine. 
These include: "buffer" operations for 
the physical llne; "inputs', which waits 
for data to be returned after a request 
has been sent; "outputs', which sends 
the data after requested; *reader', mon- 
itors traffic on line, routing messages 
forward or through request/response 
mechanism; "writer', which copies mes- 
sages from the output buffer to the phy- 
sical line; "go', forks the processes 
°reader'/'writer" as initialization; and 
finally "receive" and "send': the user 
accessible routines to use the network 
*) 

machine = object 

path  go end ;  
(* no s y n c h r o n i z a t i o n  

i n i t i a l i z a t i o n  *) 
necessary for this 

type 
buffer - object (* s i m p l e  queue *) 

p a t h  b m a x : ( t : ( b u f p u t ) ;  l : ( b u f g e C ) )  end;  

(* bmax outstanding requests (namely 
"bufput's) may exist, "bufput's must 
p r e c e d e  " b u r g e r ' s .  *) 

var iobuffer: array[l..bmax] of massage; 
Inpp, outp: l..bmax; 

e n t r y  p r o c e d u r e  b u f p u t ( m : m e s s a g e ) ;  
b e g i n  

i o b u f f e r [ i n p p ]  := m; 
inpp := (inpp mod bmax) + I 

end; 

entr~procedure bufget4var m:message); 
begin 

m := iobuffer[outp]; 
outp :ffi (outp mod bmax) + I 

end; 

init; begin 
Inpp := I; 
outp := 1 

end; 
end; (* buffer *) 

4" Only t h e  Path Expression synchronizes 
the buffer code. *) 

inputs - object (* handle input *) 

path resp rcvd; resp walt end; 

(* "resp wait" will not c o n t i n u e  until 
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"resp_rcvd" is finished. It then merely 
copies the message from the llne moni- 
tor. ~) 

vat mesgcontents: item; 

entry procedure resp rcvd(cont: item); 
begin 

mesgcontents :i coat 
end; 

entry procedure resp wait 
(var coat: item); 

begin 
coat :~ mesgcontents 

end; 
end; (* inputs ~) 

outputs - ob~ec t (~ handles output ~) 

path rqst rcvd; build mesg end; 

(~ "build mesg" may not be executed until 
"rqst rcvd" is complete ~) 

entry procedure build_mesg(c:channel; 
Info:item; va._~ mesg:message); 

b e s i n  
masg.k ind  := r e s p o n s e ;  
mesg.link :- c; 
mesg.contents := info; 

end; 

entry procedure rqstrcvd; 
begin end; 

(* This procedure is empty as no code is 
required, only a "signal" for the Path 
Expression to process. *) 

~nd; (* outputs *) 

y a r  bur :  b u f f e r ;  
inp: array [channel] of Inputs; 
out: array [channel] of outputs; 
(* logical channels are used for communica- 

tion. Each machine has a different set 
of input and output channels. *) 

process  reader(lapser, outset:channelset; 
inllne:line); 

(* read messages from line *) 
va___r m: message; 

begin 
repeat 

Inllne.frombuslink(m); 
(* get message from llne *) 

i_~ (m.klnd ffi response) and 
(m.llnk i__n Inpset) 

(* response for me? ~) 
the__ninp[m.link].resprcvd(m.contents) 

else 
if (m.klnd = request) an__..d 

(m.llnk In outset) 
(* request for me? *) 

then out[m.llnk].rqst rcvd 
else 

buf°bufput(m) 
(* pass message on *) 

until false 
end; (* reader process ,) 

~rocess writer(outllne:llnk); 
(* put messages onto line ~) 

va_r m: message; 

ben 
repeat 

buf.bufget(m); 
outline.to buslink(m) 

until false 
end; (* wrlterprocess *) 

entry procedure go(who: node; 
inpset, outset:channelset; 
Inllne, outline: llne); 
begin 

reader(lapser, outset, inline); 
writer(outline) 

end; 

(~ User called procedures: *) 

procedure recelve(c:channel; va___Kv:item); 

va._rmesg: message; 

begin 
mesg.kind : -  request; 
mesg.link := c; 
buf.bufput(mesg); (* request mesg *) 
inp[c].resp wai=(v) (* grab response *) 

end; 

procedure send(c: channel; info:item); 

vat mesg: massage; 

b e g i n  
out[e].build mesg(c, info, mesg); 

(* build mesg after reqst *) 
buf.bufput(mesg) (* send mesg along *) 

end;  

(* Each machines's code would go here: it 
would be invoked by go *) 

end; (* machine ~) 

(~ Finally, it is necessary to specify the 
physical lines between the machines *) 

va__~net: array [node] o_~ machine; 
lines: array [node] o_~ llne; 

b e g i n  
net[l].go(l, [2,3], [1,4], lines[3], lines[2]); 
net[2].go(2, [1,6], [2,5], llnes[l], lines[3]); 
net[3].go(3, [4,5], [3,6], lines[2], lines[1]) 

end. 

D.2 DINING PHILOSOPHERS 

The well known problem of the dining philoso- 
phers involves a set of five philosophers whose 
activities in life are eating and thinking. Each 
philosopher thinks for a while, eats, thinks, eats 
and so on. The philosophers share a unique dining 
arrangement: though two utensils are required for 
a philosopher to eat, the five dining places are 
located around a circular table with only one 
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utensil on the right of each dining place. There- 
fore, the philosophers must share utensils° The 
problem involves the scheduling of the philosophers 
so that no philosopher attempts to begin eating 
when his utensils are not available° The Path Pas- 
cal solution to this problem is different from many 
in that no explicit queues are needed~ Each philo- 
sopher is a process attempting to use the ~fork" 
objects~ Paths synchronize access and prevent 
deadlocks from occurring° Note that only simple 
synchronization statements are given (e.g., only 
four philosophers eating at a time, only one using 
each fork)° The rest of the program specifies the 
logic of thinking and eating. 

eonst nphilosophers = 5; 
maxlndex = 4; (e nphilosophers - I ~) 

type diner - 0..maxindex; 

va__[ i: integer; 
table: object 

path maxlndex:(starteating; stope~ting) end; 
yar fork: array [diner] of 

object 
path l:(pickup; putdown) end; 
entry procedure pickup; begin end; 
entry procedur, e putdown; begin en_d; 

end; 

e n t r  7 procedure starteating(no: d i n e r ) ;  
begin 

fork[no].pickup; 
fork[(no+l) ,mo,d nphilosophers].plckup 

end; 

e n t r y  p rocedure  s t o p e a t i n g ( n o :  d i n e r ) ;  
begin 

f o r k  [no] .putdown; 
f o r k [ ( n o + l )  mod n p h i l o s o p h e r s ] . p u t d o w u ;  

end; 
end;  (* table *) 

p roces s  phi losopher(mynum: d i n e r ) ;  
begin 

repeat 
delay(ran(seed)); 
table.starteatlng(mynum); 
delay(ran(seed)); 
table.stopeatlng(mynum); 

until false; 
end; 

fo r i:= 0 t_omaxindex  d_gphilosopher(i) 
end. 

D.3 BUFFER MANAGEMENT 

A simple ring buffer 
below: 

implementation is shown 

const bufsize = 32; 
maxbuf = 31; 

ire buffer = object (* b u f f e r s  l/~ ~) 

pat ~ bufslze: (I: (fill); I: (empty)) end; 

buf range  = O..maxbuf;  
b u f a r r a y  = a r r a y [ b u f r a n g e ]  of char ;  

var inptr, outptr: bufrange; 
buf: bufarray; 

entry procedure flll(ch: char); 
begin 

buf[Inptr] :- ch; 
inptr :- (inptr+l) mod bufsize 

e~d; 

entry procedur@ empty(va_ E ch: char); 
begin 

ch :- buf[outptr]; 
outptr :- (outptr+l) m°,d bufsize 

en__d; 

init; begin Inptr :- 0; outptr := 0 end 
end; 

Two routines are provided, "fill" and "empty'. 
Note that the routines are very terse: only infor- 
mation relating to the actually changing of 
pointers and data is presented. All synchroniza- 
tion and restriction information is described by 
the Path Expression, which assures mutual exclusion 
for each routine and places a maximum on the buffer 
size. Attempts to exceed the buffer size are not 
allowed to proceed until an element is removed from 
the b u f f e r .  

D.4 TERMINAL DRIVER 

A simple driver for a full duplex terminal is 
shown below: 

type bits = set of 0..15; 

Ya.r sereenbuf, programbuf: buffer; 

interrupt process kbd[veetor = #60, priority - 4]; 

va__/ kybdst[#177560]: bits; 
kybddt[#177562]: bits; 
ch: b i t s ;  

begin 
kybdst := [6]; 
repeat 

dolo; 
ch :- kybddt - [7]; (* zap parity blt! *) 
acreenbuf.flll(ch); 
programbuf.fill(ch); 

u n t i l  false; 
end; 
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interrupt proces s scrn[yector - #64, Rrlorltz ~ 4]; 

va_iscnst[#177564]: bits; 
scndt[#177566]: bits; 
ch: b i t s ;  

be~ 
scnst :- [6]; 
repeat 

screenbuf.empty(ch); 
scndt :~ ch; 
dolo; 

until false; 
end; 

The two routines perform input and output respec- 
tlvely. Very little code is required once all 
speclflcatlons have been presented. The dolo in 
each routine waits for its associated interrupt and 
then does a small amount of processing before ena- 
bling the next interrupt. The input routine fills 
a buffer named "screenbuf', whlle the output 
routine empties it and displays it on the screen 
after copying the contents to "programbuf'. These 
routines show the ease with which device drivers 
can be implemented in Path Pascal. 
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